Publications

2019
Hou S, Clement RL, Diallo A, Blazar BR, Rudensky AY, Sharpe AH, Sage PT. FoxP3 and Ezh2 regulate Tfr cell suppressive function and transcriptional program. J Exp Med. 2019;216 (3) :605-620.Abstract
Follicular regulatory T (Tfr) cells are a regulatory T cell subset that controls antibody production by inhibiting T follicular helper (Tfh)-mediated help to B cells. Tfh and Tfr cells possess opposing functions suggesting unique programming. Here we elucidated the transcriptional program controlling Tfr suppressive function. We found that Tfr cells have a program for suppressive function fine-tuned by tissue microenvironment. The transcription factor FoxP3 and chromatin-modifying enzyme EZH2 are essential for this transcriptional program but regulate the program in distinct ways. FoxP3 modifies the Tfh program to induce a Tfr-like functional state, demonstrating that Tfr cells coopt the Tfh program for suppression. Importantly, we identified a Tfr cell population that loses the Tfr program to become "ex-Tfr" cells with altered functionality. These dysfunctional ex-Tfr cells may have roles in modulating pathogenic antibody responses. Taken together, our studies reveal mechanisms controlling the Tfr transcriptional program and how failure of these mechanisms leads to dysfunctional Tfr cells.
Miller BC, Sen DR, Abosy RA, Bi K, Virkud YV, LaFleur MW, Yates KB, Rodig SK, Sharpe AH, Haining NW, et al. Subsets of exhausted CD8+ T cells differentially mediate tumor control and respond to checkpoint blockade. Nat Immunol. 2019;20 (3).Abstract
T cell dysfunction is a hallmark of many cancers, but the basis for T cell dysfunction and the mechanisms by which antibody blockade of the inhibitory receptor PD-1 (anti-PD-1) reinvigorates T cells are not fully understood. Here we show that such therapy acts on a specific subpopulation of exhausted CD8+ tumor-infiltrating lymphocytes (TILs). Dysfunctional CD8+ TILs possess canonical epigenetic and transcriptional features of exhaustion that mirror those seen in chronic viral infection. Exhausted CD8+ TILs include a subpopulation of ‘progenitor exhausted’ cells that retain polyfunctionality, persist long term and differentiate into ‘terminally exhausted’ TILs. Consequently, progenitor exhausted CD8+ TILs are better able to control tumor growth than are terminally exhausted T cells. Progenitor exhausted TILs can respond to anti-PD-1 therapy, but terminally exhausted TILs cannot. Patients with melanoma who have a higher percentage of progenitor exhausted cells experience a longer duration of response to checkpoint-blockade therapy. Thus, approaches to expand the population of progenitor exhausted CD8+ T cells might be an important component of improving the response to checkpoint blockade.
LaFleur MW, Nguyen TH, Coxe MA, Yates KB, Trombley JD, Weiss SA, Brown FD, Gillis JE, Coxe DJ, Deonch JG, et al. A CRISPR-Cas9 delivery system for in vivo screening of genes in the immune system. Nat Commun. 2019;10 (1668).Abstract
Therapies that target the function of immune cells have significant clinical efficacy in diseases such as cancer and autoimmunity. Although functional genomics has accelerated therapeutic target discovery in cancer, its use in primary immune cells is limited because vector delivery is inefficient and can perturb cell states. Here we describe CHIME: CHimeric IMmune Editing, a CRISPR-Cas9 bone marrow delivery system to rapidly evaluate gene function in innate and adaptive immune cells in vivo without ex vivo manipulation of these mature lineages. This approach enables efficient deletion of genes of interest in major immune lineages without altering their development or function. We use this approach to perform an in vivo pooled genetic screen and identify Ptpn2 as a negative regulator of CD8+ T cell-mediated responses to LCMV Clone 13 viral infection. These findings indicate that this genetic platform can enable rapid target discovery through pooled screening in immune cells in vivo.
2018
Tan CL, Peluso MJ, Drivjers JM, Mera CM, Grande SM, Brown KE, Godec J, Freeman GJ, Sharpe AH. CD160 Stimulates CD8+ T Cell Responses and Is Required for Optimal Protective Immunity to Listeria monocytogenes. ImmunoHorizons. 2018;2 (7) :238-250.Abstract
CD160 promotes NK cell cytotoxicity and IFN-γ production, but the function of CD160 on CD8+T cells remains unclear with some studies supporting a coinhibitory role and others a costimulatory role. In this study, we demonstrate that CD160 has a costimulatory role in promoting CD8+ T cell effector functions needed for optimal clearance of oral Listeria monocytogenes infection. CD160−/− mice did not clear oral L. monocytogenes as efficiently as wild type (WT) littermates. WT RAG−/− and CD160−/− RAG−/− mice similarly cleared L. monocytogenes, indicating that CD160 on NK cells does not contribute to impaired L. monocytogenes clearance. Defective L. monocytogenes clearance is due to compromised intraepithelial lymphocytes and CD8+ T cell functions. There was a reduction in the frequencies of granzyme B–expressing intraepithelial lymphocytes in L. monocytogenes–infected CD160−/−mice as compared with WT littermate controls. Similarly, the frequencies of granzyme B–expressing splenic CD8+ T cells and IFN-γ and TNF-α double-producer CD8+ T cells were significantly reduced in L. monocytogenes–infected CD160−/− mice compared with WT littermates. Adoptive transfer studies showed that RAG−/− recipients receiving CD160−/− CD8+ T cells had a higher mortality, exhibited more weight loss, and had a higher bacterial burden compared with RAG−/− recipients receiving WT CD8+ T cells. These findings demonstrate that CD160 provides costimulatory signals to CD8+ T cells needed for optimal CD8+ T cell responses and protective immunity during an acute mucosal bacterial infection.
LaFleur MW, Muroyama Y, Drake CG, Sharpe AH. Inhibitors of the PD-1 Pathway in Tumor Therapy. J Immunol. 2018;200 (2) :375-383.Abstract
The programmed death 1 (PD-1) pathway delivers inhibitory signals that function as a brake for immune responses. This pathway limits the initiation and duration of immune responses, thereby protecting tissues from immune-mediated damage and autoimmune diseases. However, the PD-1 pathway also inhibits immune responses to tumors. The critical role of PD-1 in preventing antitumor immunity is demonstrated by the transformative effects of PD-1 pathway blockade in a broad range of cancers with the hallmark of durability of response. Despite this success, most patients do not respond to PD-1 monotherapy, and some patients experience adverse events. In this review, we discuss the functions of the PD-1 pathway and its translation to cancer immunotherapy. We also consider current challenges and opportunities for PD-1 cancer immunotherapy, including mechanisms of response and resistance, identification of biomarkers of response to PD-1 therapy, characterization and treatment of PD-1 therapy-related adverse events, and development of safe and effective combination therapies.
2017
Zhang R, Sage PT, Finn K, Huynh A, Blazar BR, Marangoni F, Mempel TR, Sharpe AH, Turka LA. B Cells Drive Autoimmunity in Mice with CD28-Deficient Regulatory T Cells. J Immunol. 2017;199 (12) :3972-3980.Abstract
Follicular regulatory T (TFR) cells are a newly defined regulatory T cell (Treg) subset that suppresses follicular helper T cell-mediated B cell responses in the germinal center reaction. The precise costimulatory signal requirements for proper TFR cell differentiation and function are still not known. Using conditional knockout strategies of CD28, we previously demonstrated that loss of CD28 signaling in Tregs caused autoimmunity in mice (termed CD28-ΔTreg mice), characterized by lymphadenopathy, accumulation of activated T cells, and cell-mediated inflammation of the skin and lung. In this study, we show that CD28 signaling is required for TFR cell differentiation. Treg-specific deletion of CD28 caused a reduction in TFR cell numbers and function, which resulted in increased germinal center B cells and Ab production. Moreover, residual CD28-deficient TFR cells showed a diminished suppressive capacity as assessed by their ability to inhibit Ab responses in vitro. Surprisingly, genetic deletion of B cells in CD28-ΔTreg mice prevented the development of lymphadenopathy and CD4+ T cell activation, and autoimmunity that mainly targeted skin and lung tissues. Thus, autoimmunity occurring in mice with CD28-deficient Tregs appears to be driven primarily by loss of TFR cell differentiation and function with resulting B cell-driven inflammation.
Sharpe AH. Introduction to checkpoint inhibitors and cancer immunotherapy. Immunol Rev. 2017;276 (1) :5-8.
Kamphorst AO, Wieland A, Nasti T, Yang S, Zhang R, Barber DL, Konieczny BT, Daugherty CZ, Koenig L, Yu K, et al. Rescue of exhausted CD8 T cells by PD-1-targeted therapies is CD28-dependent. Science. 2017;355 (6332) :1423-1427.Abstract
Programmed cell death-1 (PD-1)-targeted therapies enhance T cell responses and show efficacy in multiple cancers, but the role of costimulatory molecules in this T cell rescue remains elusive. Here, we demonstrate that the CD28/B7 costimulatory pathway is essential for effective PD-1 therapy during chronic viral infection. Conditional gene deletion showed a cell-intrinsic requirement of CD28 for CD8 T cell proliferation after PD-1 blockade. B7-costimulation was also necessary for effective PD-1 therapy in tumor-bearing mice. In addition, we found that CD8 T cells proliferating in blood after PD-1 therapy of lung cancer patients were predominantly CD28-positive. Taken together, these data demonstrate CD28-costimulation requirement for CD8 T cell rescue and suggest an important role for the CD28/B7 pathway in PD-1 therapy of cancer patients.
Juneja VR, McGuire KA, Manguso RT, LaFleur MW, Collins N, Haining NW, Freeman GJ, Sharpe AH. PD-L1 on tumor cells is sufficient for immune evasion in immunogenic tumors and inhibits CD8 T cell cytotoxicity. J Exp Med. 2017;214 (4) :895-904.Abstract
It is unclear whether PD-L1 on tumor cells is sufficient for tumor immune evasion or simply correlates with an inflamed tumor microenvironment. We used three mouse tumor models sensitive to PD-1 blockade to evaluate the significance of PD-L1 on tumor versus nontumor cells. PD-L1 on nontumor cells is critical for inhibiting antitumor immunity in B16 melanoma and a genetically engineered melanoma. In contrast, PD-L1 on MC38 colorectal adenocarcinoma cells is sufficient to suppress antitumor immunity, as deletion of PD-L1 on highly immunogenic MC38 tumor cells allows effective antitumor immunity. MC38-derived PD-L1 potently inhibited CD8(+) T cell cytotoxicity. Wild-type MC38 cells outcompeted PD-L1-deleted MC38 cells in vivo, demonstrating tumor PD-L1 confers a selective advantage. Thus, both tumor- and host-derived PD-L1 can play critical roles in immunosuppression. Differences in tumor immunogenicity appear to underlie their relative importance. Our findings establish reduced cytotoxicity as a key mechanism by which tumor PD-L1 suppresses antitumor immunity and demonstrate that tumor PD-L1 is not just a marker of suppressed antitumor immunity.
2016
Karunarathne DS, Horne-Debets JM, Huang JX, Faleiro R, Leow CY, Amante F, Watkins TS, Miles JJ, Dwyer PJ, Stacey KJ, et al. Programmed Death-1 Ligand 2-Mediated Regulation of the PD-L1 to PD-1 Axis Is Essential for Establishing CD4(+) T Cell Immunity. Immunity. 2016;45 (2) :333-45.Abstract
Many pathogens, including Plasmodium spp., exploit the interaction of programmed death-1 (PD-1) with PD-1-ligand-1 (PD-L1) to "deactivate" T cell functions, but the role of PD-L2 remains unclear. We studied malarial infections to understand the contribution of PD-L2 to immunity. Here we have shown that higher PD-L2 expression on blood dendritic cells, from Plasmodium falciparum-infected individuals, correlated with lower parasitemia. Mechanistic studies in mice showed that PD-L2 was indispensable for establishing effective CD4(+) T cell immunity against malaria, because it not only inhibited PD-L1 to PD-1 activity but also increased CD3 and inducible co-stimulator (ICOS) expression on T cells. Importantly, administration of soluble multimeric PD-L2 to mice with lethal malaria was sufficient to dramatically improve immunity and survival. These studies show immuno-regulation by PD-L2, which has the potential to be translated into an effective treatment for malaria and other diseases where T cell immunity is ineffective or short-lived due to PD-1-mediated signaling.
Im SJ, Hashimoto M, Gerner MY, Lee J, Kissick HT, Burger MC, Shan Q, Hale SJ, Lee J, Nasti TH, et al. Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy. Nature. 2016;537 (7620) :417-421.Abstract
Chronic viral infections are characterized by a state of CD8(+) T-cell dysfunction that is associated with expression of the programmed cell death 1 (PD-1) inhibitory receptor. A better understanding of the mechanisms that regulate CD8(+) T-cell responses during chronic infection is required to improve immunotherapies that restore function in exhausted CD8(+) T cells. Here we identify a population of virus-specific CD8(+) T cells that proliferate after blockade of the PD-1 inhibitory pathway in mice chronically infected with lymphocytic choriomeningitis virus (LCMV). These LCMV-specific CD8(+) T cells expressed the PD-1 inhibitory receptor, but also expressed several costimulatory molecules such as ICOS and CD28. This CD8(+) T-cell subset was characterized by a unique gene signature that was related to that of CD4(+) T follicular helper (TFH) cells, CD8(+) T cell memory precursors and haematopoietic stem cell progenitors, but that was distinct from that of CD4(+) TH1 cells and CD8(+) terminal effectors. This CD8(+) T-cell population was found only in lymphoid tissues and resided predominantly in the T-cell zones along with naive CD8(+) T cells. These PD-1(+)CD8(+) T cells resembled stem cells during chronic LCMV infection, undergoing self-renewal and also differentiating into the terminally exhausted CD8(+) T cells that were present in both lymphoid and non-lymphoid tissues. The proliferative burst after PD-1 blockade came almost exclusively from this CD8(+) T-cell subset. Notably, the transcription factor TCF1 had a cell-intrinsic and essential role in the generation of this CD8(+) T-cell subset. These findings provide a better understanding of T-cell exhaustion and have implications in the optimization of PD-1-directed immunotherapy in chronic infections and cancer.
Rigas D, Lewis G, Aron JL, Wang B, Banie H, Sankaranarayanan I, Galle-Treger L, Maazi H, Lo R, Freeman GJ, et al. Type 2 innate lymphoid cell suppression by regulatory T cells attenuates airway hyperreactivity and requires inducible T-cell costimulator-inducible T-cell costimulator ligand interaction. J Allergy Clin Immunol. 2016.Abstract
BACKGROUND: Atopic diseases, including asthma, exacerbate type 2 immune responses and involve a number of immune cell types, including regulatory T (Treg) cells and the emerging type 2 innate lymphoid cells (ILC2s). Although ILC2s are potent producers of type 2 cytokines, the regulation of ILC2 activation and function is not well understood. OBJECTIVE: In the present study, for the first time, we evaluate how Treg cells interact with pulmonary ILC2s and control their function. METHODS: ILC2s and Treg cells were evaluated by using in vitro suppression assays, cell-contact assays, and gene expression panels. Also, human ILC2s and Treg cells were adoptively transferred into NOD SCID γC-deficient mice, which were given isotype or anti-inducible T-cell costimulator ligand (ICOSL) antibodies and then challenged with IL-33 and assessed for airway hyperreactivity. RESULTS: We show that induced Treg cells, but not natural Treg cells, effectively suppress the production of the ILC2-driven proinflammatory cytokines IL-5 and IL-13 both in vitro and in vivo. Mechanistically, our data reveal the necessity of inducible T-cell costimulator (ICOS)-ICOS ligand cell contact for Treg cell-mediated ILC2 suppression alongside the suppressive cytokines TGF-β and IL-10. Using a translational approach, we then demonstrate that human induced Treg cells suppress syngeneic human ILC2s through ICOSL to control airway inflammation in a humanized ILC2 mouse model. CONCLUSION: These findings suggest that peripheral expansion of induced Treg cells can serve as a promising therapeutic target against ILC2-dependent asthma.
McArdel SL, Brown DR, Sobel RA, Sharpe AH. Anti-CD48 Monoclonal Antibody Attenuates Experimental Autoimmune Encephalomyelitis by Limiting the Number of Pathogenic CD4+ T Cells. J Immunol. 2016;197 (8) :3038-3048.Abstract
CD48 (SLAMF2) is an adhesion and costimulatory molecule constitutively expressed on hematopoietic cells. Polymorphisms in CD48 have been linked to susceptibility to multiple sclerosis (MS), and altered expression of the structurally related protein CD58 (LFA-3) is associated with disease remission in MS. We examined CD48 expression and function in experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. We found that a subpopulation of CD4(+) T cells highly upregulated CD48 expression during EAE and were enriched for pathogenic CD4(+) T cells. These CD48(++)CD4(+) T cells were predominantly CD44(+) and Ki67(+), included producers of IL-17A, GM-CSF, and IFN-γ, and were most of the CD4(+) T cells in the CNS. Administration of anti-CD48 mAb during EAE attenuated clinical disease, limited accumulation of lymphocytes in the CNS, and reduced the number of pathogenic cytokine-secreting CD4(+) T cells in the spleen at early time points. These therapeutic effects required CD48 expression on CD4(+) T cells but not on APCs. Additionally, the effects of anti-CD48 were partially dependent on FcγRs, as anti-CD48 did not ameliorate EAE or reduce the number of cytokine-producing effector CD4(+) T cells in Fcεr1γ(-/-) mice or in wild-type mice receiving anti-CD16/CD32 mAb. Our data suggest that anti-CD48 mAb exerts its therapeutic effects by both limiting CD4(+) T cell proliferation and preferentially eliminating pathogenic CD48(++)CD4(+) T cells during EAE. Our findings indicate that high CD48 expression is a feature of pathogenic CD4(+) T cells during EAE and point to CD48 as a potential target for immunotherapy.
Sage PT, Ron-Harel N, Juneja VR, Sen DR, Maleri S, Sungnak W, Kuchroo VK, Haining NW, Chevrier N, Haigis M, et al. Suppression by TFR cells leads to durable and selective inhibition of B cell effector function. Nat Immunol. 2016;17 (12) :1436-1446.Abstract
Follicular regulatory T cells (TFR cells) inhibit follicular helper T cell (TFH cell)-mediated antibody production. The mechanisms by which TFR cells exert their key immunoregulatory functions are largely unknown. Here we found that TFR cells induced a distinct suppressive state in TFH cells and B cells, in which effector transcriptional signatures were maintained but key effector molecules and metabolic pathways were suppressed. The suppression of B cell antibody production and metabolism by TFR cells was durable and persisted even in the absence of TFR cells. This durable suppression was due in part to epigenetic changes. The cytokine IL-21 was able to overcome TFR cell-mediated suppression and inhibited TFR cells and stimulated B cells. By determining mechanisms of TFR cell-mediated suppression, we have identified methods for modulating the function of TFR cells and antibody production.
Dobbins J, Gagnon E, Godec J, Pyrdol J, Vignali DAA, Sharpe AH, Wucherpfennig KW. Binding of the cytoplasmic domain of CD28 to the plasma membrane inhibits Lck recruitment and signaling. Sci Signal. 2016;9 (438) :ra75.Abstract
The T cell costimulatory receptor CD28 is required for the full activation of naïve T cells and for the development and maintenance of Foxp3(+) regulatory T (Treg) cells. We showed that the cytoplasmic domain of CD28 was bound to the plasma membrane in resting cells and that ligand binding to CD28 resulted in its release. Membrane binding by the CD28 cytoplasmic domain required two clusters of basic amino acid residues, which interacted with the negatively charged inner leaflet of the plasma membrane. These same clusters of basic residues also served as interaction sites for Lck, a Src family kinase critical for CD28 function. This signaling complex was further stabilized by the Lck-mediated phosphorylation of CD28 Tyr(207) and the subsequent binding of the Src homology 2 (SH2) domain of Lck to this phosphorylated tyrosine. Mutation of the basic clusters in the CD28 cytoplasmic domain reduced the recruitment to the CD28-Lck complex of protein kinase Cθ (PKCθ), which serves as a key effector kinase in the CD28 signaling pathway. Consequently, mutation of either a basic cluster or Tyr(207) impaired CD28 function in mice as shown by the reduced thymic differentiation of FoxP3(+) Treg cells. On the basis of these results, we propose a previously undescribed model for the initiation of CD28 signaling.
Ron-Harel N, Santos D, Ghergurovich JM, Sage PT, Reddy A, Lovitch SB, Dephoure N, Satterstrom KF, Sheffer M, Spinelli JB, et al. Mitochondrial Biogenesis and Proteome Remodeling Promote One-Carbon Metabolism for T Cell Activation. Cell Metab. 2016;24 (1) :104-17.Abstract
Naive T cell stimulation activates anabolic metabolism to fuel the transition from quiescence to growth and proliferation. Here we show that naive CD4(+) T cell activation induces a unique program of mitochondrial biogenesis and remodeling. Using mass spectrometry, we quantified protein dynamics during T cell activation. We identified substantial remodeling of the mitochondrial proteome over the first 24 hr of T cell activation to generate mitochondria with a distinct metabolic signature, with one-carbon metabolism as the most induced pathway. Salvage pathways and mitochondrial one-carbon metabolism, fed by serine, contribute to purine and thymidine synthesis to enable T cell proliferation and survival. Genetic inhibition of the mitochondrial serine catabolic enzyme SHMT2 impaired T cell survival in culture and antigen-specific T cell abundance in vivo. Thus, during T cell activation, mitochondrial proteome remodeling generates specialized mitochondria with enhanced one-carbon metabolism that is critical for T cell activation and survival.
Lerner SP, Bajorin DF, Dinney CP, Efstathiou JA, Groshen S, Hahn NM, Hansel D, Kwiatkowski D, O'Donnell M, Rosenberg J, et al. Summary and Recommendations from the National Cancer Institute's Clinical Trials Planning Meeting on Novel Therapeutics for Non-Muscle Invasive Bladder Cancer. Bladder Cancer. 2016;2 (2) :165-202.Abstract
The NCI Bladder Cancer Task Force convened a Clinical Trials Planning Meeting (CTPM) Workshop focused on Novel Therapeutics for Non-Muscle Invasive Bladder Cancer (NMIBC). Meeting attendees included a broad and multi-disciplinary group of clinical and research stakeholders and included leaders from NCI, FDA, National Clinical Trials Network (NCTN), advocacy and the pharmaceutical and biotech industry. The meeting goals and objectives were to: 1) create a collaborative environment in which the greater bladder research community can pursue future optimally designed novel clinical trials focused on the theme of molecular targeted and immune-based therapies in NMIBC; 2) frame the clinical and translational questions that are of highest priority; and 3) develop two clinical trial designs focusing on immunotherapy and molecular targeted therapy. Despite successful development and implementation of large Phase II and Phase III trials in bladder and upper urinary tract cancers, there are no active and accruing trials in the NMIBC space within the NCTN. Disappointingly, there has been only one new FDA approved drug (Valrubicin) in any bladder cancer disease state since 1998. Although genomic-based data for bladder cancer are increasingly available, translating these discoveries into practice changing treatment is still to come. Recently, major efforts in defining the genomic characteristics of NMIBC have been achieved. Aligned with these data is the growing number of targeted therapy agents approved and/or in development in other organ site cancers and the multiple similarities of bladder cancer with molecular subtypes in these other cancers. Additionally, although bladder cancer is one of the more immunogenic tumors, some tumors have the ability to attenuate or eliminate host immune responses. Two trial concepts emerged from the meeting including a window of opportunity trial (Phase 0) testing an FGFR3 inhibitor and a second multi-arm multi-stage trial testing combinations of BCG or radiotherapy and immunomodulatory agents in patients who recur after induction BCG (BCG failure).
Chen P-L, Roh W, Reuben A, Cooper ZA, Spencer CN, Prieto PA, Miller JP, Bassett RL, Gopalakrishnan V, Wani K, et al. Analysis of Immune Signatures in Longitudinal Tumor Samples Yields Insight into Biomarkers of Response and Mechanisms of Resistance to Immune Checkpoint Blockade. Cancer Discov. 2016;6 (8) :827-37.Abstract
UNLABELLED: Immune checkpoint blockade represents a major breakthrough in cancer therapy; however, responses are not universal. Genomic and immune features in pretreatment tumor biopsies have been reported to correlate with response in patients with melanoma and other cancers, but robust biomarkers have not been identified. We studied a cohort of patients with metastatic melanoma initially treated with cytotoxic T-lymphocyte-associated antigen-4 (CTLA4) blockade (n = 53) followed by programmed death-1 (PD-1) blockade at progression (n = 46), and analyzed immune signatures in longitudinal tissue samples collected at multiple time points during therapy. In this study, we demonstrate that adaptive immune signatures in tumor biopsy samples obtained early during the course of treatment are highly predictive of response to immune checkpoint blockade and also demonstrate differential effects on the tumor microenvironment induced by CTLA4 and PD-1 blockade. Importantly, potential mechanisms of therapeutic resistance to immune checkpoint blockade were also identified. SIGNIFICANCE: These studies demonstrate that adaptive immune signatures in early on-treatment tumor biopsies are predictive of response to checkpoint blockade and yield insight into mechanisms of therapeutic resistance. These concepts have far-reaching implications in this age of precision medicine and should be explored in immune checkpoint blockade treatment across cancer types. Cancer Discov; 6(8); 827-37. ©2016 AACR.See related commentary by Teng et al., p. 818This article is highlighted in the In This Issue feature, p. 803.
Saha A, O'Connor RS, Thangavelu G, Lovitch SB, Dandamudi DB, Wilson CB, Vincent BG, Tkachev V, Pawlicki JM, Furlan SN, et al. Programmed death ligand-1 expression on donor T cells drives graft-versus-host disease lethality. J Clin Invest. 2016;126 (7) :2642-60.Abstract
Programmed death ligand-1 (PD-L1) interaction with PD-1 induces T cell exhaustion and is a therapeutic target to enhance immune responses against cancer and chronic infections. In murine bone marrow transplant models, PD-L1 expression on host target tissues reduces the incidence of graft-versus-host disease (GVHD). PD-L1 is also expressed on T cells; however, it is unclear whether PD-L1 on this population influences immune function. Here, we examined the effects of PD-L1 modulation of T cell function in GVHD. In patients with severe GVHD, PD-L1 expression was increased on donor T cells. Compared with mice that received WT T cells, GVHD was reduced in animals that received T cells from Pdl1-/- donors. PD-L1-deficient T cells had reduced expression of gut homing receptors, diminished production of inflammatory cytokines, and enhanced rates of apoptosis. Moreover, multiple bioenergetic pathways, including aerobic glycolysis, oxidative phosphorylation, and fatty acid metabolism, were also reduced in T cells lacking PD-L1. Finally, the reduction of acute GVHD lethality in mice that received Pdl1-/- donor cells did not affect graft-versus-leukemia responses. These data demonstrate that PD-L1 selectively enhances T cell-mediated immune responses, suggesting a context-dependent function of the PD-1/PD-L1 axis, and suggest selective inhibition of PD-L1 on donor T cells as a potential strategy to prevent or ameliorate GVHD.
Sakai S, Kauffman KD, Sallin MA, Sharpe AH, Young HA, Ganusov VV, Barber DL. CD4 T Cell-Derived IFN-γ Plays a Minimal Role in Control of Pulmonary Mycobacterium tuberculosis Infection and Must Be Actively Repressed by PD-1 to Prevent Lethal Disease. PLoS Pathog. 2016;12 (5) :e1005667.Abstract
IFN-γ-producing CD4 T cells are required for protection against Mycobacterium tuberculosis (Mtb) infection, but the extent to which IFN-γ contributes to overall CD4 T cell-mediated protection remains unclear. Furthermore, it is not known if increasing IFN-γ production by CD4 T cells is desirable in Mtb infection. Here we show that IFN-γ accounts for only ~30% of CD4 T cell-dependent cumulative bacterial control in the lungs over the first six weeks of infection, but >80% of control in the spleen. Moreover, increasing the IFN-γ-producing capacity of CD4 T cells by ~2 fold exacerbates lung infection and leads to the early death of the host, despite enhancing control in the spleen. In addition, we show that the inhibitory receptor PD-1 facilitates host resistance to Mtb by preventing the detrimental over-production of IFN-γ by CD4 T cells. Specifically, PD-1 suppressed the parenchymal accumulation of and pathogenic IFN-γ production by the CXCR3+KLRG1-CX3CR1- subset of lung-homing CD4 T cells that otherwise mediates control of Mtb infection. Therefore, the primary role for T cell-derived IFN-γ in Mtb infection is at extra-pulmonary sites, and the host-protective subset of CD4 T cells requires negative regulation of IFN-γ production by PD-1 to prevent lethal immune-mediated pathology.

Pages