Publications

2009
Paterson AM, Vanguri VK, Sharpe AH. SnapShot: B7/CD28 costimulation. Cell. 2009;137 (5) :974-4.e1.
Francisco LM, Salinas VH, Brown KE, Vanguri VK, Freeman GJ, Kuchroo VK, Sharpe AH. PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J Exp Med. 2009;206 (13) :3015-29.Abstract
Both the programmed death (PD) 1-PD-ligand (PD-L) pathway and regulatory T (T reg) cells are instrumental to the maintenance of peripheral tolerance. We demonstrate that PD-L1 has a pivotal role in regulating induced T reg (iT reg) cell development and sustaining iT reg cell function. PD-L1(-/-) antigen-presenting cells minimally convert naive CD4 T cells to iT reg cells, showing the essential role of PD-L1 for iT reg cell induction. PD-L1-coated beads induce iT reg cells in vitro, indicating that PD-L1 itself regulates iT reg cell development. Furthermore, PD-L1 enhances and sustains Foxp3 expression and the suppressive function of iT reg cells. The obligatory role for PD-L1 in controlling iT reg cell development and function in vivo is illustrated by a marked reduction in iT reg cell conversion and rapid onset of a fatal inflammatory phenotype in PD-L1(-/-)PD-L2(-/-) Rag(-/-) recipients of naive CD4 T cells. PD-L1 iT reg cell development is mediated through the down-regulation of phospho-Akt, mTOR, S6, and ERK2 and concomitant with the up-regulation of PTEN, all key signaling molecules which are critical for iT reg cell development. Thus, PD-L1 can inhibit T cell responses by promoting both the induction and maintenance of iT reg cells. These studies define a novel mechanism for iT reg cell development and function, as well as a new strategy for controlling T reg cell plasticity.
2008
Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol. 2008;26 :677-704.Abstract
Programmed death 1 (PD-1) and its ligands, PD-L1 and PD-L2, deliver inhibitory signals that regulate the balance between T cell activation, tolerance, and immunopathology. Immune responses to foreign and self-antigens require specific and balanced responses to clear pathogens and tumors and yet maintain tolerance. Induction and maintenance of T cell tolerance requires PD-1, and its ligand PD-L1 on nonhematopoietic cells can limit effector T cell responses and protect tissues from immune-mediated tissue damage. The PD-1:PD-L pathway also has been usurped by microorganisms and tumors to attenuate antimicrobial or tumor immunity and facilitate chronic infection and tumor survival. The identification of B7-1 as an additional binding partner for PD-L1, together with the discovery of an inhibitory bidirectional interaction between PD-L1 and B7-1, reveals new ways the B7:CD28 family regulates T cell activation and tolerance. In this review, we discuss current understanding of the immunoregulatory functions of PD-1 and its ligands and their therapeutic potential.
Ha S-J, Mueller SN, Wherry JE, Barber DL, Aubert RD, Sharpe AH, Freeman GJ, Ahmed R. Enhancing therapeutic vaccination by blocking PD-1-mediated inhibitory signals during chronic infection. J Exp Med. 2008;205 (3) :543-55.Abstract
Therapeutic vaccination is a potentially promising strategy to enhance T cell immunity and viral control in chronically infected individuals. However, therapeutic vaccination approaches have fallen short of expectations, and effective boosting of antiviral T cell responses has not always been observed. One of the principal reasons for the limited success of therapeutic vaccination is that virus-specific T cells become functionally exhausted during chronic infections. We now provide a novel strategy for enhancing the efficacy of therapeutic vaccines. In this study, we show that blocking programmed death (PD)-1/PD-L1 inhibitory signals on exhausted CD8(+) T cells, in combination with therapeutic vaccination, synergistically enhances functional CD8(+) T cell responses and improves viral control in mice chronically infected with lymphocytic choriomeningitis virus. This combinatorial therapeutic vaccination was effective even in the absence of CD4(+) T cell help. Thus, our study defines a potent new approach to augment the efficacy of therapeutic vaccination by blocking negative signals. Such an approach may have broad applications in developing treatment strategies for chronic infections in general, and perhaps also for tumors.
Akbari O, Stock P, Meyer EH, Freeman GJ, Sharpe AH, Umetsu DT, DeKruyff RH. ICOS/ICOSL interaction is required for CD4+ invariant NKT cell function and homeostatic survival. J Immunol. 2008;180 (8) :5448-56.Abstract
The development of airway hyperreactivity (AHR), a cardinal feature of asthma, requires the presence of invariant NKT (iNKT) cells. In a mouse model of asthma, we demonstrated that the induction of AHR required ICOS costimulation of iNKT cells. ICOS was highly expressed on both naive and activated iNKT cells, and expression of ICOS was greater on the CD4(+) iNKT than on CD4(-) iNKT cells. Furthermore, the number of CD4(+) iNKT cells was significantly lower in spleens and livers of ICOS(-/-) and ICOSL(-/-) mice, and the remaining iNKT cells in ICOS(-/-) mice were dysfunctional and failed to reconstitute AHR when adoptively transferred into iNKT cell-deficient Jalpha18(-/-) mice. In addition, direct activation of iNKT cells with alpha-GalCer, which induced AHR in wild-type mice, failed to induce AHR in ICOS(-/-) mice. The failure of ICOS(-/-) iNKT cells to induce AHR was due in part to an inability of the ICOS(-/-) iNKT cells to produce IL-4 and IL-13 on activation. Moreover, survival of wild-type iNKT cells transferred into ICOSL(-/-) mice was greatly reduced due to the induction of apoptosis. These results indicate that ICOS costimulation plays a major role in induction of AHR by iNKT cells and is required for CD4(+) iNKT cell function, homeostasis, and survival in the periphery.
Brooks DG, Ha S-J, Elsaesser H, Sharpe AH, Freeman GJ, Oldstone MBA. IL-10 and PD-L1 operate through distinct pathways to suppress T-cell activity during persistent viral infection. Proc Natl Acad Sci U S A. 2008;105 (51) :20428-33.Abstract
Suppression of T-cell responses by host-derived regulatory factors is a key event leading to viral persistence. Antibody blockade of either IL-10 or programmed death-ligand 1 (PD-L1) during viral persistence enhances T-cell function and reduces viral titers. Because blockade of these immunoregulatory networks represents a powerful approach to establish immune control during persistent infection, it is important to determine whether these immunoinhibitory factors act independently or jointly and if combined blockade of these factors further enhances T-cell immunity and viral clearance. Herein, we demonstrate that the IL-10 and PD-L1 immunosuppressive pathways are mechanistically distinct. As a result, simultaneous blockade of IL-10 and PD-L1 was significantly more effective in restoring antiviral T-cell responses than blockade of either alone, and led to substantially enhanced control of an established persistent viral infection. Thus, combinatorial blockade of multiple immune-regulatory molecules may ultimately restore the T-cell responses required to tip the balance from viral persistence to immune-mediated control or elimination of persistent infection.
Butte MJ, Peña-Cruz V, Kim M-J, Freeman GJ, Sharpe AH. Interaction of human PD-L1 and B7-1. Mol Immunol. 2008;45 (13) :3567-72.Abstract
Numerous studies have pointed to the role of programmed death-1 ligand 1 (PD-L1) in regulating tolerance, chronic infection, and tumor immunity. Recently, we have identified murine B7-1 as a new binding partner for murine PD-L1. Human and mouse B7-1 share only 46% identity, leading us to question whether human B7-1 and PD-L1 can participate in a similar interaction. Here we show that human B7-1 can interact with human PD-L1 with affinity greater than that of B7-1 with CD28, but less than that of B7-1 with CTLA-4 or of PD-L1 with PD-1. We characterize a series of anti-human PD-L1 monoclonal antibodies and identify antibodies that can block interactions of PD-L1 with B7-1, PD-1, or both. Since PD-L1 and CD28 on T cells may compete for B7-1 as a binding partner and CD8 T cells may express high or low levels of CD28, we examined when PD-L1 and CD28 are co-expressed on CD8 T cells. We compared the time-course and extent of PD-L1 induction on CD8 CD28high versus CD28low T cells following stimulation with anti-CD3. We show that PD-L1 is induced to a higher level on CD28high T cells than on CD28low T cells upon activation. These results suggest that PD-L1 may play an important and undervalued role on human T cells.
Duan B, Niu H, Xu Z, Sharpe AH, Croker BP, Sobel ES, Morel L. Intrafollicular location of marginal zone/CD1d(hi) B cells is associated with autoimmune pathology in a mouse model of lupus. Lab Invest. 2008;88 (9) :1008-20.Abstract
Marginal zone (MZ) B cells contain a large number of autoreactive clones and the expansion of this compartment has been associated with autoimmunity. MZ B cells also efficiently transport blood-borne antigen to the follicles where they activate T cells and differentiate into plasma cells. Using the B6.NZM2410.Sle1.Sle2.Sle3 (B6.TC) model of lupus, we show that the IgM+ CD1d(hi)/MZ B-cell compartment is expanded, and a large number of them reside inside the follicles. Contrary to the peripheral B-cell subset distribution and their activation status, the intrafollicular location of B6.TC IgM+ CD1d(hi)/MZ B cells depends on both bone marrow- and stromal-derived factors. Among the factors responsible for this intrafollicular location, we have identified an increased response to CXCL13 by B6.TC MZ B cells and a decreased expression of VCAM-1 on stromal cells in the B6.TC MZ. However, the reduced number of MZ macrophages observed in B6.TC MZs was independent of the IgM+ CD1d(hi)/B-cell location. B7-2 but not B7-1 deficiency restored IgM+ CD1d(hi)/MZ B-cell follicular exclusion in B6.TC mice, and it correlated with tolerance to dsDNA and a significant reduction of autoimmune pathology. These results suggest that follicular exclusion of IgM+ CD1d(hi)/MZ B cells is an important B-cell tolerance mechanism, and that B7-2 signaling is involved in breaching this tolerance checkpoint.
Lucas JA, Menke J, Rabacal WA, Schoen FJ, Sharpe AH, Kelley VR. Programmed death ligand 1 regulates a critical checkpoint for autoimmune myocarditis and pneumonitis in MRL mice. J Immunol. 2008;181 (4) :2513-21.Abstract
MRL/MpJ-Fas(lpr) (MRL-Fas(lpr)) mice develop a spontaneous T cell and macrophage-dependent autoimmune disease that shares features with human lupus. Interactions via the programmed death 1/programmed death ligand 1 (PD-1/PD-L1) pathway down-regulate immune responses and provide a negative regulatory checkpoint in mediating tolerance and autoimmune disease. Therefore, we tested the hypothesis that the PD-1/PD-L1 pathway suppresses lupus nephritis and the systemic illness in MRL-Fas(lpr) mice. For this purpose, we compared kidney and systemic illness (lymph nodes, spleen, skin, lung, glands) in PD-L1 null (-/-) and PD-L1 intact (wild type, WT) MRL-Fas(lpr) mice. Unexpectedly, PD-L1(-/-);MRL-Fas(lpr) mice died as a result of autoimmune myocarditis and pneumonitis before developing renal disease or the systemic illness. Dense infiltrates, consisting of macrophage and T cells (CD8(+) > CD4(+)), were prominent throughout the heart (atria and ventricles) and localized specifically around vessels in the lung. In addition, once disease was evident, we detected heart specific autoantibodies in PD-L1(-/-);MRL-Fas(lpr) mice. This unique phenotype is dependent on MRL-specific background genes as PD-L1(-/-);MRL(+/+) mice lacking the Fas(lpr) mutation developed autoimmune myocarditis and pneumonitis. Notably, the transfer of PD-L1(-/-);MRL(+/+) bone marrow cells induced myocarditis and pneumonitis in WT;MRL(+/+) mice, despite a dramatic up-regulation of PD-L1 expression on endothelial cells in the heart and lung of WT;MRL(+/+) mice. Taken together, we suggest that PD-L1 expression is central to autoimmune heart and lung disease in lupus-susceptible (MRL) mice.
Gotsman I, Sharpe AH, Lichtman AH. T-cell costimulation and coinhibition in atherosclerosis. Circ Res. 2008;103 (11) :1220-31.Abstract
Evidence from many human and rodent studies has established that T lymphocytes enhance inflammation in atherosclerotic plaques and contribute to lesion progression and remodeling. Recent work also indicates that regulatory T cells are important in limiting proatherogenic T-cell responses. Given the important role of T cells in atherosclerosis, there is a need to fully understand how proatherogenic T cells are activated and regulated. Antigen-dependent activation of naïve T cells, leading to clonal expansion and effector T-cell differentiation, and effector and memory T cells, is enhanced by signals provided by costimulatory molecules expressed by antigen presenting cells, which bind to receptors on the T cells. In addition, T-cell responses to antigen are negatively regulated by coinhibitory molecules expressed by antigen-presenting cells, which bind to receptors on T cells. Two major families of costimulatory molecules include the B7 and the tumor necrosis factor (TNF) families. These molecules bind to receptors on T cells belonging to the CD28 or TNF receptor families, respectively. The best-defined coinhibitors and their receptors belong to the B7 and CD28 families. Recent work has begun to define how these T-cell costimulatory and coinhibitory pathways influence atherosclerosis, largely in mouse models of the disease. Profound effects are attributable to molecules in both the B7/CD28 (B7-1/2, ICOS, and PDL-1/2) and the TNF/TNF receptor (CD40, OX40, and CD137) families. One emerging theme is that both pathogenic effector T-cell responses and regulatory T cells are influenced by overlapping sets of costimulators and coinhibitors. These complexities must be considered as immunotherapeutic approaches for atherosclerotic disease are developed.
Taylor PA, Ehrhardt MJ, Lees CJ, Panoskaltsis-Mortari A, Krieg AM, Sharpe AH, Murphy WJ, Serody JS, Hemmi H, Akira S, et al. TLR agonists regulate alloresponses and uncover a critical role for donor APCs in allogeneic bone marrow rejection. Blood. 2008;112 (8) :3508-16.Abstract
Cytosine-phosphorothioate-guanine oligodeoxynucleotides (CpG ODNs) are synthetic ODNs with unmethylated DNA sequences that mimic viral and bacterial DNA and protect against infectious agents and tumor challenge. We show that CpG ODNs markedly accelerated graft-versus-host disease (GVHD) lethality by Toll-like receptor 9 (TLR9) ligation of host antigen-presenting cells (APCs), dependent upon host IFNgamma but independent of host IL-12, IL-6, or natural killer (NK) cells. Imaging studies showed significantly more green fluorescent protein-positive (GFP(+)) effector T cells in lymphoid and nonlymphoid organs. In engraftment studies, CpG ODNs promoted allogeneic donor bone marrow (BM) rejection independent of host IFNgamma, IL-12, or IL-6. During the course of these studies, we uncovered a previously unknown and critical role of donor BM APCs in modulating the rejection response. CpG ODNs promoted BM rejection by ligation of donor BM, but not host, TLR9. CpG ODNs did not impair engraftment of TLR9(-/-) BM unless wild-type myeloid (CD11b(+)) but not B-lineage (CD19(+)) BM cells were added to the donor inoculum. The importance of donor BM APCs in modulating the strength of the host antidonor rejection response was underscored by the finding that B7-1/B7-2(-/-) BM was less likely than wild-type BM to be rejected. Collectively, these data offer new insight into the mechanism of alloresponses regulating GVHD and BM rejection.
2007
Sharpe AH, Wherry JE, Ahmed R, Freeman GJ. The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection. Nat Immunol. 2007;8 (3) :239-45.Abstract
The programmed cell death 1 (PD-1) surface receptor binds to two ligands, PD-L1 and PD-L2. Studies have shown that PD-1-PD-L interactions control the induction and maintenance of peripheral T cell tolerance and indicate a previously unknown function for PD-L1 on nonhematopoietic cells in protecting tissues from autoimmune attack. PD-1 and its ligands have also been exploited by a variety of microorganisms to attenuate antimicrobial immunity and facilitate chronic infection. Here we examine the functions of PD-1 and its ligands in regulating antimicrobial and self-reactive T cell responses and discuss the therapeutic potential of manipulating this pathway.
Keir ME, Francisco LM, Sharpe AH. PD-1 and its ligands in T-cell immunity. Curr Opin Immunol. 2007;19 (3) :309-14.Abstract
The past year has seen significant advances in our understanding of the critical roles of negative immunoregulatory signals delivered by the programmed death 1 (PD-1)-PD-1 ligand (PD-L) pathway in regulating T-cell activation and tolerance. Emerging evidence indicates that PD-Ls play an essential role on dendritic cells (DCs), both directly during DC-T cell interactions and indirectly through signaling into the DC. Recent studies point to a novel role for PD-L1 in maintaining tissue tolerance. Finally, PD-1 has recently been shown to be highly expressed on exhausted T cells during chronic viral infection, and blockade of PD-1 or PD-L1 can revive exhausted T cells, enabling them to proliferate and produce effector cytokines.
Kwan KY, Greenwald RJ, Mohanty S, Sharpe AH, Shaw AC, Wang JC. Development of autoimmunity in mice lacking DNA topoisomerase 3beta. Proc Natl Acad Sci U S A. 2007;104 (22) :9242-7.Abstract
Mice lacking DNA topoisomerase 3beta are predisposed to a shortened lifespan, infertility, and lesions in multiple organs resulting from inflammatory responses. Examination of the immune system of 6- and 52-week-old top3beta(-/-) mice revealed no significant aberrations in their central and peripheral tolerance or in T lymphocyte activation. However, the older but not the younger cohort shows a high incidence of serum autoantibodies relative to their TOP3beta(+/+) age-mates. The mutant mice also show an increase in numerical aberrations of chromosomes in splenocytes and bone marrow cells, as well as an increase in apoptotic cells in the thymus. Thus, it appears plausible that the inflammatory lesions in top3beta(-/-) mice are caused by the development of autoimmunity as they age: Chromosomal abnormalities in top3beta(-/-) mice might lead to a persistent increase in apoptotic cells, which might in turn lead to the progression of autoimmunity.
Grabie N, Gotsman I, DaCosta R, Pang H, Stavrakis G, Butte MJ, Keir ME, Freeman GJ, Sharpe AH, Lichtman AH. Endothelial programmed death-1 ligand 1 (PD-L1) regulates CD8+ T-cell mediated injury in the heart. Circulation. 2007;116 (18) :2062-71.Abstract
BACKGROUND: PD-L1 and PD-L2 are ligands for the inhibitory receptor programmed death-1 (PD-1), which is an important regulator of immune responses. PD-L1 is induced on cardiac endothelial cells under inflammatory conditions, but little is known about its role in regulating immune injury in the heart. METHODS AND RESULTS: Cytotoxic T-lymphocyte-mediated myocarditis was induced in mice, and the influence of PD-L1 signaling was studied with PD-L1/L2-deficient mice and blocking antibodies. During cytotoxic T-lymphocyte-induced myocarditis, the upregulation of PD-L1 on cardiac endothelia was dependent on T-cell-derived interferon-gamma, and blocking of interferon-gamma signaling worsened disease. Genetic deletion of both PD-1 ligands [PD-L1/2(-/-)], as well as treatment with PD-L1 blocking antibody, transformed transient myocarditis to lethal disease, in association with widespread polymorphonuclear leukocyte-rich microabscesses but without change in cytotoxic T-lymphocyte recruitment. PD-L1/2(-/-) mice reconstituted with bone marrow from wild-type mice remained susceptible to severe disease, which demonstrates that PD-L1 on non-bone marrow-derived cells confers the protective effect. Finally, depletion of polymorphonuclear leukocytes reversed the enhanced susceptibility to lethal myocarditis attributable to PD-L1 deficiency. CONCLUSIONS: Myocardial PD-L1, mainly localized on endothelium, is critical for control of immune-mediated cardiac injury and polymorphonuclear leukocyte inflammation.
Shen L, Jin Y, Freeman GJ, Sharpe AH, Dana RM. The function of donor versus recipient programmed death-ligand 1 in corneal allograft survival. J Immunol. 2007;179 (6) :3672-9.Abstract
Programmed death-ligand (PD-L)1 and PD-L2, newer B7 superfamily members, are implicated in the negative regulation of immune responses and peripheral tolerance. To examine their function in alloimmunity, we used the murine model of orthotopic corneal transplantation. We demonstrate that PD-L1, but not PD-L2, is constitutively expressed at high levels by the corneal epithelial cells, and at low levels by corneal CD45+ cells in the stroma, whereas it is undetectable on stromal fibroblasts and corneal endothelial cells. Inflammation induces PD-L1 up-regulation by corneal epithelial cells, and infiltration of significant numbers of PD-L1+CD45+CD11b+ cells. Blockade with anti-PD-L1 mAb dramatically enhances rejection of C57BL/6 corneal allografts by BALB/c recipients. To examine the selective contribution of donor vs host PD-L1 in modulating allorejection, we used PD-L1-/- mice as hosts or donors of combined MHC and minor H-mismatched corneal grafts. BALB/c grafts placed in PD-L1-/- C57BL/6 hosts resulted in pronounced T cell priming in the draining lymph nodes, and universally underwent rapid rejection. Allografts from PD-L1-/- C57BL/6 donors were also significantly more susceptible to rejection than wild-type C57BL/6 grafts placed into BALB/c hosts, primarily as a result of increased T cell infiltration rather than enhanced priming. Taken together, our results identify differential roles for recipient vs donor PD-L1 in regulating induction vs effector of alloimmunity in corneal grafts, the most common form of tissue transplantation, and highlight the importance of peripheral tissue-derived PD-L1 in down-regulating local immune responses.
Tai X, Van Laethem F, Sharpe AH, Singer A. Induction of autoimmune disease in CTLA-4-/- mice depends on a specific CD28 motif that is required for in vivo costimulation. Proc Natl Acad Sci U S A. 2007;104 (34) :13756-61.Abstract
CTLA-4-deficient mice develop a lethal autoimmune lymphoproliferative disorder that is strictly dependent on in vivo CD28 costimulation. Nevertheless, it is not known whether there is a specific site on the CD28 molecule that is required for induction of autoimmunity. Using CTLA-4-deficient mice expressing CD28 molecules with various point mutations in the CD28 cytosolic tail, the present study documents that in vivo costimulation for induction of autoimmune disease strictly requires an intact C-terminal proline motif that promotes lymphocyte-specific protein tyrosine kinase Lck binding to the CD28 cytosolic tail, because point mutations in C-terminal proline residues (Pro-187 and Pro-190) completely prevented disease induction. In contrast, in vivo costimulation for disease induction did not require either an intact YMNM motif or an intact N-terminal proline motif, which, respectively, promote phosphoinositide 3-kinase and IL2-inducible T cell kinase binding to the CD28 cytosolic tail. Thus, in vivo CD28 costimulation for induction of autoimmune disease is strictly and specifically dependent on an intact C-terminal proline motif that serves as a lymphocyte-specific protein tyrosine Lck kinase binding site in the CD28 cytosolic tail.
Keir ME, Freeman GJ, Sharpe AH. PD-1 regulates self-reactive CD8+ T cell responses to antigen in lymph nodes and tissues. J Immunol. 2007;179 (8) :5064-70.Abstract
PD-1, an inhibitory receptor expressed on activated lymphocytes, regulates tolerance and autoimmunity. We tested the role of PD-1:PD-1 ligand (PD-L) interactions in cross-presentation and the generation and control of CD8(+) responses against self-Ag. Ag-naive PD-1(-/-) OVA-specific OT-I CD8(+) T cells exhibited exacerbated responses to cross-presented Ag in mice expressing soluble OVA under the control of the rat insulin promoter (RIP-ova(high)). Following adoptive transfer into RIP-ova(high) recipients, PD-1(-/-) OT-I T cells expanded in the pancreatic lymph node. In contrast to wild-type OT-I cells, PD-1(-/-) OT-I T cells secreted IFN-gamma and migrated into the pancreas, ultimately causing diabetes. Loss of PD-1 affected CD8(+) cells intrinsically, and did not significantly alter the responses of wild-type OT-I T cells adoptively transferred into the same RIP-ova(high) recipient mouse. PD-1:PD-L interactions also limited CD8(+) effector cells, and PD-L1 expression on parenchymal tissues protected against effector OT-I T cell attack. Finally, we found that the loss of PD-1 on effector OT-I cells lowers the threshold for Ag recognition in peripheral tissues. These findings indicate two checkpoints where PD-1 attenuates self-reactive T cell responses: presentation of self-Ag to naive self-reactive T cells by dendritic cells in the draining lymph node and reactivation of pathogenic self-reactive T cells in the target organ.
Menke J, Lucas JA, Zeller GC, Keir ME, Huang XR, Tsuboi N, Mayadas TN, Lan HY, Sharpe AH, Kelley VR. Programmed death 1 ligand (PD-L) 1 and PD-L2 limit autoimmune kidney disease: distinct roles. J Immunol. 2007;179 (11) :7466-77.Abstract
The programmed death 1/programmed death 1 ligand (PD-L) pathway is instrumental in peripheral tolerance. Blocking this pathway exacerbates experimental autoimmune diseases, but its role in autoimmune kidney disease has not been explored. Therefore, we tested the hypothesis that the programmed death 1 ligands (PD-L1 and PD-L2), provide a protective barrier during T cell- and macrophage (Mphi)-dependent autoimmune kidney disease. For this purpose, we compared nephrotoxic serum nephritis (NSN) in mice lacking PD-L1 (PD-L1(-/-)), PD-L2 (PD-L2(-/-)), or both (PD-L1/L2(-/-)) to wild-type (WT) C57BL/6 mice. Kidney pathology, loss of renal function, and intrarenal leukocyte infiltrates were increased in each PD-L(-/-) strain as compared with WT mice. Although the magnitude of renal pathology was similar in PD-L1(-/-) and PD-L2(-/-) mice, our findings suggest that kidney disease in each strain is regulated by distinct mechanisms. Specifically, we detected increased CD68(+) cells along with elevated circulating IgG and IgG deposits in glomeruli in PD-L2(-/-) mice, but not PD-L1(-/-) mice. In contrast, we detected a rise in activated CD8(+) T cells in PD-L1(-/-) mice, but not PD-L2(-/-) mice. Furthermore, since PD-L1 is expressed by parenchymal and hemopoietic cells in WT kidneys, we explored the differential impact of PD-L1 expression on these cell types by inducing NSN in bone marrow chimeric mice. Our results indicate that PD-L1 expression on hemopoietic cells, and not parenchymal cells, is primarily responsible for limiting leukocyte infiltration during NSN. Taken together, our findings indicate that PD-L1 and PD-L2 provide distinct negative regulatory checkpoints poised to suppress autoimmune renal disease.
Butte MJ, Keir ME, Phamduy TB, Sharpe AH, Freeman GJ. Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses. Immunity. 2007;27 (1) :111-22.Abstract
Pathways in the B7:CD28 family of costimulatory molecules regulate T cell activation and tolerance. B7-dependent responses in Cd28(-/-)Ctla4(-/-) T cells together with reports of stimulatory and inhibitory functions for Programmed Death-1 Ligand 1 or 2 molecules (PD-L1 or PD-L2) have suggested additional receptors for these B7 family members. We show that B7-1 and PD-L1 interacted with affinity intermediate to that of B7-1:CD28 and B7-1:CTLA-4. The PD-L1:B7-1 interface overlapped with the B7-1:CTLA-4 and PD-L1:PD-1 (Programmed Death-1) interfaces. T cell activation and cytokine production were inhibited by the interaction of B7-1 with PD-L1. The responses of PD-1-deficient versus PD-1,B7-1 double-deficient T cells to PD-L1 and of CD28,CTLA-4 double-deficient versus CD28,CTLA-4,PD-L1 triple-deficient T cells to B7-1 demonstrated that PD-L1 and B7-1 interact specifically to inhibit T cell activation. Our findings point to a substantial bidirectional inhibitory interaction between B7-1 and PD-L1 and add an additional dimension to immunoregulatory functions of the B7:CD28 family.

Pages